Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.
نویسندگان
چکیده
Enzyme catalysis can be described as progress over a multi-dimensional energy landscape where ensembles of interconverting conformational substates channel the enzyme through its catalytic cycle. We applied NMR relaxation dispersion to investigate the role of bound ligands in modulating the dynamics and energy landscape of Escherichia coli dihydrofolate reductase to obtain insights into the mechanism by which the enzyme efficiently samples functional conformations as it traverses its reaction pathway. Although the structural differences between the occluded substrate binary complexes and product ternary complexes are very small, there are substantial differences in protein dynamics. Backbone fluctuations on the micros-ms timescale in the cofactor binding cleft are similar for the substrate and product binary complexes, but fluctuations on this timescale in the active site loops are observed only for complexes with substrate or substrate analog and are not observed for the binary product complex. The dynamics in the substrate and product binary complexes are governed by quite different kinetic and thermodynamic parameters. Analogous dynamic differences in the E:THF:NADPH and E:THF:NADP(+) product ternary complexes are difficult to rationalize from ground-state structures. For both of these complexes, the nicotinamide ring resides outside the active site pocket in the ground state. However, they differ in the structure, energetics, and dynamics of accessible higher energy substates where the nicotinamide ring transiently occupies the active site. Overall, our results suggest that dynamics in dihydrofolate reductase are exquisitely "tuned" for every intermediate in the catalytic cycle; structural fluctuations efficiently channel the enzyme through functionally relevant conformational space.
منابع مشابه
Evidence for dynamics in proteins as a mechanism for ligand dissociation
Signal transduction, regulatory processes and pharmaceutical responses are highly dependent upon ligand residence times. Gaining insight into how physical factors influence residence times (1/k(off)) should enhance our ability to manipulate biological interactions. We report experiments that yield structural insight into k(off) involving a series of eight 2,4-diaminopyrimidine inhibitors of dih...
متن کاملGenetic mutations in 57 and 58 codons gene of Plasmodium vivax dihydrofolate reductase
Introduction: The use of Sulfadoxine and pyrimethamine (SP) for treatment of vivax malaria is not common in most of malarious areas because of sensivity of this parasite to chloroquine. But, Plasmodium vivax isolates are exposed to SP because of mixed infection with P.falciparum and this subject has lead to emergence of mutations in P.vdhfr gene. As Plasmodium vivax is the most prevalent specie...
متن کاملIntegrated description of protein dynamics from room-temperature X-ray crystallography and NMR.
Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond-nanosecond) of bond vector fluctuations, whereas high-resolution X-ray ...
متن کاملCofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway
The enzyme dihydrofolate reductase (DHFR, E) from Escherichia coli is a paradigm for the role of protein dynamics in enzyme catalysis. Previous studies have shown that the enzyme progresses through the kinetic cycle by modulating the dynamic conformational landscape in the presence of substrate dihydrofolate (DHF), product tetrahydrofolate (THF), and cofactor (NADPH or NADP(+)). This study focu...
متن کاملDynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering.
The internal dynamics of native and immobilized Escherichia coli dihydrofolate reductase (DHFR) have been examined using incoherent quasielastic neutron scattering. These results reveal no difference between the high frequency vibration mean-square displacement of the native and the immobilized E. coli DHFR. However, length-scale-dependent, picosecond dynamical changes are found. On longer leng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 4 شماره
صفحات -
تاریخ انتشار 2010